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1. Introduction and Summary.

Suppose X

2 . . . .
N(ul, Gi), cees N(un, Gn) , respectively. Does the distribution of the

10t Xn are independently distributed according to

2
,on)?

R . . 2 '
maximm of X, ..., X uniquely determine (ul, cl), cees (un

In other terms, can more than one set of independent normal variables
glve rise to the same distribution of the random variable which is the
maximum of the constituent random varisbles? Our paper answers this
question; in fact, the relevant theorem answers this question about
identification of parameters on the basis of the maximum of a set of
random variables for a more general family of parent distributions.
Our attention was called to this problem by an inquiry from an
econometrician (Professor Takeshi Amemiyas, Department of Economics,
Stanford University). In an econometric model Xl is defined as the
quantity of a commodity which consumers would be willing to purchase
under specified circumstances including the price of a unit, and X2

is the quantity that would be sold by the prroducers under certain

conditions. A simple stochastic model specifies the demand and supply



schedules as

(1.1) X, =0, + B+ u

1 1 1°

(1.2) X

where p 1is the price of the commodity and Uy and u, are inde~

pendent (unobservable) normal random variables with means O and

variances Oi and 02 , respectively. If the price is set indepen~

dently of the market (for example, by an outside agency or by custom),
then the gquantity actually sold by the producers to the consumers at a

given price p is the minimum of X, and X, given by (1.1) and (1.2).

2

Since the econometrician wishes to determine the demand and supply
schedules, he raises the question of whether observations on the quantity
passing from producers to consumers at various prices determine the

parameters of the model: the intercepts o and o the slopes B

1 2° 1

and 82 , and the variances Oi and Og . Since the normal distribution

is symmetric, the question is mathematically equivalent to the question

posed in terms of the maximum of Xl and X2 . (In the more customary

equilibrium model there is a third equation equating démand to supply,
Xl = X2 . This model, in which Xl = X2 and p are observable random
variables, represents a market in which the price adjusts so that at
that price the quantity Xl that buyers demand is equal to the quantity
X, that sellers produce.)

In this paper we have studied the question in greater generality

by considerihg the maximum of an arbitrary number of random variables.



Intuitively, the approach is that if the variance of one of X eesy X

1* n
is larger than the variance of the others the distribution (or density)
of the maximum in the upper tail is similar to the distribution (or den-
sity) in the upper tail of the component with maximum variance. It is
therefore convenient for us to prove identifiability on the basis of a
general condition on the upper tails of the densities in a certain family
(Section 2). As applications of this general theorem we answer the
question posed in the first paragraph in the affirmative and also assure
our econometrician that the parameters in the model are identified.

It is natural to ask in what way this property of identifiecation
carries over to multivariate cases. In the econometric example.a set
of consumers may consider purchasing a number of commodities and a set
of producers may propose to sell these commodities; for each commodity
the quantity actually sold from producer to consumer at a given price
is the minimum of the amount desired at that price and the amount offered
by the producers at that price.

We study the multivariate case within the framework of the normal
distribution, the parameters of which are the means of the variables,
the variances, and the correlations between the variables. The maximum
of the vector variable is defined as the vector of the maxims of the
respective elements of the constituent vector varisbles. Consideration
of the marginal distribution of the maximum of a particular coordinate
of the constituent vector variables determines the set of means and
variances of that coordinate (by Theorem 2.1). However, the one~to-one

correspondence between the means and variances of two different coor—

dinates of the constituent‘vector varlables is not available from study



of the several marginal distributions. Moreover, identification of the
correigtion coefficients in the distributions of the vector variable
cannot be made from one-dimensional distributions.

In Bection 3 we treat the multivariate normal distribution where
all means are zero and all the correlations are nonnegative; in this
case there is identificationrwherever the correlation is not zero. In
Secfiﬁn 5 we treat the case of two vector random &ariables; then there
is complete identification. In order to treat this case we develop a
generalization of Mills' ratio, which is of interest in its own right.

This is given in Section L,



2. 'The Univariate Case.

Theorem 2.1, Let &F ©Dbe a family of probability density functions

f on R, which are continuous and positive to the right of some point

1

A and such that if £ and g are any two distinct members of $

then linlxw{f(x)/g(x)} exists and equals either 0 or « . Let

Xl’ PN Xn be independent random variables with regpective pdf's

fl, oo fn in 3’ , and Yl’ ooy Yn be independent random variables

with pdf's e d . If mex{X;, ..., ¥ } ‘and max{¥,, ..., ¥ } have

identical distributions, then m = n and there exigts a permutation

{kl, cee km} of {1, ..., m} such that the paf of Y, s f .
1
i=1, .¢.,m.
Proof. By definition
) m m
(2.1) Primax{X , ..., X }<x]= 1T Pr{X. <x}= T F,(x),
1 m i=1 i . i= i

where F,(x) = f}foo fi(u.)du , and similarly,

(2.2) Pr[max{Yl, cees Yn} < x] = G. (x) ,

1

[ =]

i=1

v v _
where Gi(x) f_oo gi(u)du L g, € F . We are given

(2.3) .II Fi(x) = T C—i(x) . w0 < x < o

Hence,



m
(2.%) ] nF (x)=

in Gi(x) .
i=1 i

i~

1

Differentiating with respect to x , we have for all x > A

m n
(2.5) I £ x)/Fx) = Z g, (x)/a, (x) .

i=1 i=1

By changing notation we can rewrite (2.5) as

min
(2.6) Y a.f.(x)/F.(x)=0,

. i1 i

i=1
where a, = 1,1=1,...,m, and a, = -1, i =n+l,...,;mtn, and
fm+i = 85 i=1,2,...50 &

There exists an f, , say f; , such that limx+m[fi(x)/fl(x)]
is either 0 or 1 for i=2,...,mtn . Let I =
{12, G)/E(x) »1 as x> ©} . Then dividing (2.6) by f,(x)
and letting x + ® , we have ZieI a, = 0 , so that I contains an
even number of elements, half of which are from {1, ..., m} . Thus
a certain number of fi in (2.5) are identical and are identical to
the same number of gi . Subtracting these identical terms‘from both
sides of (2.5), we have a new equation of the same form but with fewer
terms. The process can be iterated until each term on one side of (2.5)
is matched with one term on the other. If m = n , the proposition is
proved. On the other hand if m #n,say m<n , we have n-m of

the g, such that gi(x) =0 for all x > A , contrary to the assump-

tion about Ef . Hence, m=n. Q.E.D.



Example 2,1, The family of normal densities with arbitrary means

and variances satisfies the assumptions of the theorem. In fact, if

Y-
exp[_ L}&%L_] ,

20

(2.7) ¢(x[u,0) =

V2T o

then as x » o«

~ 2 2
0 if Gl > 62 or 1f o = 02 and ul > u2 .
o(x|u,,0,) .
2272 . 2 2 N 2 _ 2
(2.8) W‘*{“ it Ol < O'2 or if Gl = O‘2 and }Jl < Ll2 5
2 2
§l if Ol = 02 and ul = u2 .
Example 2.2. ILet
(X—d—ﬁg)g |
(2.9) ¢ (x|a,B,0,p) = exp|- 5
2m O 20
Then as x »
(2.10)
(. 2 2 . 2 2
> = >
0 if oy 0, or if oy Oy and ul-FBlpl a2-+82p2 .
o(x|a,,8,,0,,0,) .
22722 2 Fo . 2 2 . 2 2
[ = <
IR ) +—< if o) < o, or if oy 0, and uli-Blpl o+ 82p2 .
127171y
1if 02 = 02 a + R = + R
8 17 P2 8RO FEPy = 0y +EoD,

The parameters are identified if at least two of Xl’ sens Xn have

densities with the same pair 0,8 and different values of p . {In the



econometric "equilibrium" model X, =X, and p are random variables
determined as the solution of (1.1) and (1.2); any joint normal density
of these two variables is consistent with various sets of B

0§ and 02 and hence the parameters cannot be identified.)

lﬂ 629

Example 2.3. Let ¢AQX) =0, x<0, ¢A(X).= Ae-kx, x 20 . Then

(0 ir A, <2,

1 2°?
Ay :
(2.11) EI—EET-+<‘» i Al > kz .
1

Ll if Al = Xz .

There exist many families of pdf's which do not have the property
postulated in the theorem but the members of which are identified by

the distribution of the maximum random varigble.

Example 2.k, ILet

(2.12) fa(x) =

If fi = fai, i=1,...,m, g, = fb » 1 =1,...,n, then

(2.13) Pr[max{Xi, i=1,...,m} .<_min{ai, i=1,...,m}] =090

implies



(2.14) min{a., ..., am} = mih{bl, ey bn} .

1°
Further, the form of the cdf of thé‘maximum for values of x Dbetween
the smallest and second smallest distinct a; tells us that the number
of a, = min{ai}J is the same as the mumber of b, = min{ai} s and also
that the second smallest a; = +the second smallest bi . Proceeding
this way, we reach the conclusion that m =n and '{al, ooy am} is

a permutation of {bl, cees bm} .

Example 2.5. Let

(2.15) £, (x) = %e—'X—aI )

In this case, if fi = fa and g; = f , then for all sufficiently

1 by
large x , equation (2.3) becomes

m 1 --x+a:.L n —X+bi
(2.16) I\l -3e )= I (1 - ) .
i=1 i=1

Without loss of generality, we may assume m < n , write =z

I\)(LI—'

= e , and

multiply both sides of (2.16) Dby 2 , giving

ai n 1 bi
) = 1 (% - 3e ) .
i=1

Equating the zeros of the two polynomials yields the conclusion that

o

m
(2.17) 22 (z -
i=1

m=n and {al, cees am} is a permutation of {bl, cens bm} .



There are also examples of a family of densities whose elements
are not identified by the distribution of the maximum. For example,

let

(2.18) fa(x) =

and 3‘={fa: a>0} . If f;=f , i=1,..,m, the cdf of

i
ma.x{Xi} is
*Tj8
e * » X2 0,
(2.19)
1 s X >0,
, n
and the only inference from (1) is ZT=18.1 = 25210

10



3. A Special Multivariate Normel Case.

1
, X .) has the distribution

Suppose the vector X, = (Xli’ ees Xog

I\I(,Hi, gi), i=1,...,n . Let ‘YJ = max(le, e ij) and let

, .
Y = (Yl, cens Yp) . Does the distribution of Y determine the para-
meters Uy Zl, RIS Zn ? Conslderation of the marginal distribu-~

tion shows that the distribution of Yj determines the values of the

?l)’ e (pjn’ 0? ) for each J . (The j,kth element

pairs (ujl’ g in

of I, is O41%:P 3kt .} But, the marginal distributions do not lead
to correspondences between the différént values of j .  However, if
bivariate distributions are identified, then the correspondences for
Jd=1,...,p can be made. Accordingly we turn our attention to bivariate
distributions.

We consider an arbitrary number n of bivariate normal distribu-
tions but restrict them so as to minimize the kind of tedious computa-—
tions which we are not able to avoid in Section 5 in the detailed dis-

cussion of the case n = 2 .

Theorem 3,1. If @l, Peey @n, Fl’ ey Em are nonsingular bi-

variate normal cdf's with zero means and the correlations in

., ..., 0 are all nonnegative, then
1 n

n m
(3.1) I @i(x,y) = 1 Fi(x,y)
i=1 i=]1

implies that m = n , there are no Fi with negative correlations, the

number of zero correlations is the saﬁe on both sides of (3.1), and the

Fi with positive correlations can be didentified one-for-one with the

@i having positive correlations.

11



Proof. By letting one varisble go to infinity in the identity
(3.1), we see from the one~dimensional result of Exampie 2.1 that the
set of x-variances on the 1l.h.s. of (3.1) is a permutatioﬁ of that on
the r.h.s.; and the same igs true of the y-variances. Also, m=mn.,

Therefore, if the x-variance, correlation and the y-variance in @i

2

. 2 .
are respectively ‘Oi, ;s Ti » then we may assume, without loss of

2 2
. Y., B,

generality, that the corresponding parameters for Fi are 0o, i 5

where (tl, cees tn) is a permutation of (Tl, vy Tn)

Taking logarithms in (3.1) and differentiating with respect to x .

we get
n .p.X '

(3.2) 2 iL-n(EEO Nﬂ?a-_ ~&—9//l—p?]//®.(x,y)
i=1 % % [y 9 i

where n(+) and N(-) are, respectively, the one-dimensional standerd
normal pdf and cdf.

o} ,

Now, let o = max{oi, i=1,...,n}, I ={i: o,
Io(p) = {1 : p; = 0,1 ¢ I}, Io(r) = {i : r., =0,1ieI}. On dividing

(3.2) by (1/0)n(x/c) and letting x > © , we get

(3.3) 1= 1+ | 1/N(y/t.) .
ielg(p) ielg(r) {i:ie%,ri<0} T

Since the last term is strictly monotone\unless {i:1¢ I, r, < 0}

is empty, we see that there is no r, <0 for ieI, and that

12



Io(p) and Io(r) contain the same number of points. Hence, the terms
corresponding to (o = 0., p; = 0) and (o = 0., Ty = 0) cancel one

another out in (3.2).

Next, let B

mln{piTi :ie - Io(p)} , and
I,(p) = {i : ;T =B, i¢ I}, 1,(r) = {i : r;t, =B, 1el}. In

(3.2), 1let y = Bx/o + u , divide by 1/0 n(x/0) and let x + o

holding u fixed. Then we obtain

(3.4) yoom—2—)= ) g2 R
1811(9) T ﬁ’pi lEIl(T> ti ﬁ_rf {1:riti<8,1€I}

Letting u » « , we see that {i : r.t, <B,ie I} is empty. Dif

ferentiating with respect to u in (3.4) we get

] N

i Iz( Yy [2 2 ? 2 2}
1€ r .
1 V@ﬁ—s /@i—ﬁ

(3.5) Y

1 u
n
€1 (o)) fZ2 \ 22

1

Let T = max{Ti, t, + i€ Il(p), jEe Il(r)} , divide by
IlGLVTg"Bz) and let u > » , We see that the number of T, =T is the
same as that of ti =T 5 and that for the corresponding @i and Fi .
we have p; = R/t = ry

Eliminating the terms with Ti = ti =T from (3.5), we can repeat
the process with the remaining largest value of the y-variance; and
continuing this way, we see that we have identified

{(Gi, oy Ti), ie Il(p)} with {(Gi, r., ti), i eI (r)} one-for-one.

1

Eliminating these terms from (3.2), we can now repeat the process with

13



the next larger value of P;T;o 1 €T - Io(p) , and continuing this

way, we are able to identify '{(ci, Py» Ti), ieI-1I/(p)} with

0
{(Oi, ri, ti), iel- Io(r)} one~for-one. We are then left with an
equation ‘similar to (3.2) but with a smaller number of terms and with

Oi < 0 . Iterating the procedure successively, we are thus able to

. >0,1=1,...,n} with

identify {(Oi, Py Ti) ooy

{(Oi, ri, ti) Prs >0, 1 =.l,...,n} one-for-one.

Finally, removing these identical terms from both sides of (3.1),
we are left with products of one-dimensional normal cdfs in x and ¥y
with the same set of x-variances appearing on both sides and also the
same set of y-variances, but there is no unique matching of (x,y)

pairs among these.

1k



L, A Biveriate Mills' Ratio.

For the investigation in Section 5 we need a generalization of the
univari ate Mills' ratio

(4.1) n(,x)(jl;- - -1-37) <1 - Nx) < nm% \ x>0,
x .

vhere n(+) and N(-) are the standard normal pdf and cdf. (See, e.g.,
Feller [1], p. 175.)

Theorem 4.1, Tet

(4.2) xay) = j du,v) dudv |
u > x
v >y
where
2. . 2
(4.3) o(u,v) = L exp[- Y20 UV + v

2
em/1-p° 2(1-0%)

If p>0, A= (X-'-py)/}’l--p2 >0, B= (y-px)/M-p®>0 , then

2

2
(l"-h) ¢(XsY)(X_(l—p )

- 1) 3 (1-p°)%
oy ) (y-px) (1""5)( ";2') L 8(x,y) < ¢ (%47 )75

A py ) (y-px) °

if p<0, A>0, B>0, then

2 : 2,2
(1-0°) 1-p 1-p (1-p°)
(’-hS) ¢(X,Y)(X‘DY)(Y~DX) ( ""‘“"AQ) (l - B2) =< @(XaY) < ¢(X’Y)(X-py)(y—pﬂ .

15



Proof:

(4.6)

where

(L.7)

We have

(L4.8)

(k.9)

(4.10)

Let

(4.11)

Poer) = J —— exp[-"<‘X+S>2—‘2p<x+s)(y+t>+<,y+t>2]dsdt
9 . . 2
s ,£50 2m/l-p° 2(1-p)
= ¢(x,y) J exp[— 3_2:2_9§.t_"'_’£] exp[_ S(X-pY)+t(y-DX):ldsd‘t
4 2(1-p°)

Cpq A2

= ¢(x,y)(1-p7) T (&,B) ,

u2 2puv+ 2
J(A,B) = J exp[- —:—%—L] exp[ - Au - Bvldudv .

u,v>0
(for u>0,v2>0)
(1-0) (2+v?) < v - 2owv +vP <w® v, p>o0,

-u2—2puv+v2=u2+,v2, p=0,

w4 Ve < u? - 2puv + v < (l-p)(u2+v2v) , p<O0.

2 24v2)
J = exp[— 2877 /1t exp(- Au - Bv)dudv .

16



Then for a2 =1 - p

(h,12) J, 27 (4,B) £J. p>0,
(4.13) J (A,B) = I s p=0,
(h.1k) J, 23 (4,B) < I, p<o.

Note that Ja is the product of two terms of the type

| 'a2u2+ 2cu
(4.15) f exp[— —— wﬂ .
u>0
vhere ¢ =A or B . The expression (4.15) equals
(au+ £) 2]
(4.16)  exp|—<~ exp| ~ & —lau = exp| —— yem —!;-exp(:z—?dv .
, 2 2 2 . 5 2 a /-2— 2
a u>0 & > -g— m

If ¢ > 0, this is bounded above and below, respectively, by 1/c and
(l/c)(l-ag/cg) according to (L.1). For p = 0 +the theorem follows
directly from (L4.1) because 5(X,Y) = a(x)a(y) . For p>0 and p <0
the theorem follows from (.6), (k.12), and (L.1L). Q.E.D.

Remarks. Notice that the conditions A >0, B>0 for x > 0,
¥y > 0 correspond to s point (x,y) in the first quadrant that is above
the regression line (Y on X) and to the right of the other (X on 7Y).
If p<0, then A>0 and B> 0 are autométically satisfied if
X,y >0 .

It is of interest to compare Theorem 2 with the bound of Harkness
and Godambe ([2]). The principal term in our estimate (which is also

our upper bound) is

17



‘(1-02)2
~py ) (y-px)

(4.17) BICEO

subject to the assumption that x ~ py, y - px > 0 (which is a re-
striction only if p > 0). Since (4.17) is symmetric in (x,y) , let
y=cx ,with 1 <c<1l/p if p >0 . Then (4.17) is

' 2
(4.18) —t expl- 22 (1-2pc+c?) (1-0°)

on/A—p2 2(1-0%) | x®(1-pe) (c=p)

In the Harkness and Godambe estimates, the principal terms in the upper

and lower bounds are, respectively,

(h.19) @0)® 2 Q2ot)| |1 (1407) x°2(1-p)
: 2 expI= 2y | 2 SXP|Im T
X op gl 2(1-p%) or 6_02 x 2(1-p%)
and
(L4.20)
(1+0)° _ 1 - exp| - Cf-2or)| .1 (1+p)° exp |- x2c22(1-9)

2 2 : 2 B 2.2 2
cx" é_pe 2(1~-p%) o {_pe cx ( 2(1-p%)

Now, (4.18) = (4.19) = (4.20) if e¢ =1, but for 1< c < 1/p ,
(4,18)/(k.19) » 0 and (4.20)/(4.18) 0 as x> o ,

Finally, if p > 0 and y > x/p , we can still get quite good
bounds from (4.4) by using &(x',y) < ®(x,y) < 3(x,y') where x < x' < y
and % <y' <y , which is better than using ®(y,y) < &(x,y) < ®(x,x) .

Since the denominator in'ﬁhe last factor in (h.lS) is maximized by

choosing c¢ = (p + 1/p)/2, &(x,y') , with y' = [(02+l)/(20)]x » might

18



be a reasonably good upper bound for E(X,y) when y >x/p , p >0 ;
similarly, ®(x',y) , with x' = [2p/(p2+1)]y might be a reasonably good

upper bound. In the case of a general bivariate normal distribution, we

have
,
Tl ) (smw)(t=v) | (£-v)?
o oo N L R | 2
(4.21) J J exp| —Z gT I—lat ds
a 2ﬂ01/1ap2 2(1-0%)

Corollary 4.1. Let (M.Zl)'yg_denoted'gz_ 3(a,b; U,V,0,T,0) , let

the integrand be denoted by ¢(s,t; u,v,0,7,0) , and let

T T 0
()“'-22) A = s B = e
l--p2 l--p2

a~y pb-v b~V LDa'“
o

If p>0, A>0, B>0, then

°

(4.23) ( - —1—)(1 - _1_) < —2(ab; Wv,0,T,0)88
oTd

2
A2 B2 (a,b; u:VaOaTsp)(l_p )

If p<0, A>0, B>0, then

19



(4.,2L) (‘_]_ - 1-’0)(1 - 1-0) < 5(a,b;4‘_p,\),0,T,p)AB <1
GT¢(aSb; U,V,G,T,p)(l-’pe)

Corollary 4.2, Iet y -y = c('x-p) » Where ¢ is a positive

constant. Then, as x * ® , we have

=7 N 6 i e ‘ 3 N 2 . .
(4.25) <I>\Vx,cx§ g,v,G,AT_,p)_k;c—u)_ (¢-c90)(205pr)_ .1
077" $x,cx3 W,V,0,T,p0) (1-p~)

for all ¢ >0 if p <0 and for c e (pt/o, t/[{po]) if p>0.

20



5.  The General Case of Two Multivariate Normal Distributions.

As was explained in Section 3, the solution of identifiability for
the multivariate normal case depends on the solution for the bivariate

hormal case. We treat the case of n = 2 in terms of the notation of

Section 3.

Theorem 2.1. If @l, @2, Fl’ F2 are bivariate normal cdf's such
that
(5.1) 2, (x,y) o, (x,y) = F, (x,y) Fg(i,y) )

then one of the following relations holds:

(i) ® =F, and % =F, , or
(i) @& =7, and ®, =F, , or

(iii) 2, (x,y) A, (x) B,(y), 1 =1,2, ana

Fo(x,y) = A, (x) B,(y), F,(x,y) = A(x) B (y)

Proof. We shall give a detailed proof under the assumption that the
eans are all zero. The proof for the genersal case of arbitrary means
is not different in spirit, but only involves additional tedious compu-
tations of the same kind. As in Section 3, we shall assume the parameters
2 2 . 2 2
to be (oi, Py» Ti), i=1,2, on the lhs of (5.1) ang (ci, r., ti),

i=1,2, on the rhs. From (5.1) we obtain

21



(5.2)

g(XaY)

#

32

+ g O

9%t Y 5y

= ‘bl(.X,.V') ¢2(X 93’)

+ ¢ (x,5) ¢, (x,y)

@2 +

Ty 1% &) 0, Gx,y)]

2
oy

N

vhere n(<) and N(:) are univariate standard normal pdf and cdf,

respectively.

(5.3)

IG

deration of the marginal distributions we have o

=T

T 2

1

Also,

2

£(x,y) = g [F) () Fy(x,y)]

First consider the simple case

01 = 95

1

T

1

c

2

=T2=

= 8

By consi-

17 80

= tl = t2 » S0 that the problem can be reduced to standard form

by scale transformations on x and v .

give us

22
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2 2
X =2p xy+y
(5.4) gp(x,y) = 1 1

exp| - 5 @2 (x,y)
- or /l_pi 2(1—01)
- . -
(x~p.y) (y-px)
+ n(x)n(y) N Y N -
’{“pl' Ao,

- .

- -
(y=0-1)| | (xo0.5)
+ n)nly) Bl | | P

Ao ) A

2 2
X =p Xyty
2
+ o (x,y) EXPf = ————e—eme—e
1 2 2(1 2)
2m/1-p =Py
2
=g (x,y) .
On putting y = x s we have
gE(X’X) 1 L o 1-0y -0,
(5.5) ng(x) = - exp Tro b'e <I>2(x,x) + 2N Tvp, x|N T,
Vl-pl
p
P 2 x° o, (x,x)

b s 1
VY o
1-p5

= >
Suppose max(pl, Pos T1s r2) Py > 0 and let r T

12 % Then as

X > ©
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gp(xax) { o Vl“pi'
(5.6) = exp| T <7 | <
R 2 1+p 2 .
n-(x) 1 if p, = p,
[ 2
V1-p
1
On the other hand
0 if pl > ry 3_r2 s
g (x,x)
r P12 1 . _
(5.7) exp 21 > < if p,. =r. >r_ ,
2% (x) | 170, /f“§ 1 . 2
l--pl
2 . = -
- if pl ry = r2 »
Hence, if P = Pp > then Ty E Yy T P T 0, and @l = @2 = Fl

If pl > p2 , then r. =

1 =P and Ty = Py thus & =F., and

1 1

Now suppose max(pl, 02, Ty rz) = pl =0 . If Py = 0.,
(5.5) > 4 ; then gr(x,x)/nz(x) + 4 , which implies r, =r, =

Py <0, (5.5) > 3 ; then gr(x,x)/ng(x) + 3 , which implies

rl.= 0> r2 = p2 .
Now suppose max(pl, Pos Tqs r2) = p; <0 . Then (5.5) »

Consider

g(x,x)

e 1 b 2
(5.8) —— D = exp x7 )0, (x,x)

ng(x) 2 1+0) 2
/1-

Pl

2l



By Mills' ratio
(5.9) it}

Then as x -

gp(X,X)

(5.10) —— _ 2| A-p?

n2(x)

Similerly as x - «

gr(x,X)
(5.11) |—5—— - 2| /- 2
n"(x)

We obtain identification.

1 X2) >4 1 if

now consider

II. Having disposed of the case o

Without loss of

the situation where there is at least one inequality.



generality, we may suppose 01 > 02 .

¥y fixed and let x + © , we have

Then in Equation (5.2), if we keep

-
0 if Py >0,
g(X,Y)O
(5.12) ~ L +4—;}-n(—$) N(—TX—) + %l—-n(:[y—) N@f-) if p =0
n{= 1\ 2 2 \p 1
1
1 4&)
- n if p, <0 .
~.T2 (’r2 1

In.the same way, from (5.3) we get

() <

=
0 if r. >0,

f{x,y)o: ,

(5.13) l+ﬁti-n(:g'—) I\T(%L) + 2 p
n [ 1 1 2 2
o1

Lo :
T n(_b ) if rl< 0.
L2 27/

Consequently, from (5

(o) P > 0==>1r >0,
(g) pp =0==>r =0,
(v) Py <O=>r <0 and t,=1

In Case (a), let y = yx , where Yy = P17y

‘noting that 1/02 - 2pv/(oT) ,+‘y2/12 = (1—02)/02

(5.2) we obtain

(5.14)

(x X)Ol—}' 1
1'12- .
o1 1

/2ﬂkl—p§)"

o (so that tl = Tl)

/0l , and x - ® ; then,

+ (p/o - y/'r)2 , from



On the other hand, looking at the expression for (5.3) similar to that

for (5.2), we observe that

2
T
| A
1 x t 0 03
(5.15) £, (x,yx) = 11(—) exp| -
i 0. 2 ?
ot /2m (:L—ri ) * 2 (l"ri )
so that - .
1
' 0 if t—Y— =,
. 1 1
(5.16) (x,yx) 037
X 1 r
n{— 1 . J o1
1 R
1 1
& /on(1-x)
Hence, on account of (5.1), we conclude that
y o1 2, 2 2, 2
.1 T a - = - R
(5.17) i "5 = t7(1-r]) = 17 (1-p7)
This implies t, = T, and r, =op, . Bo, in Case (a), @l = F, and
hence @2 = F2 .

Next, in Case (B), the original equation (5.1) becomes

(5.18) N(a?‘l—) N(;Yl—) 2, (x,y) = N(—%—) N(;Gyl—) Folx,y) .

If we now remove the ébmmon factor N(x/cl) from both sides, differen-
tiate with respect to x and remove the common factor (1/02)n(x/02)

from both sides, we are left with
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Yy . X e x

(5.19) T Po 5~ . " Yoo,
NG%F) N|—2 e ]- N(fl) N|—=2 2] .
1 vl—pg 1 l—rg

2

If Py = 0 , the 1hs of (5.19) is independent of x , and hence r, = 0
in this case, both sides of (5.1) are products of univariate cdfs, and

there is no unique matching of (x,y) pairs. On the other hand, if

p2 £ 0 +then r, # 0 ; and differentiating (5.19) with respect to x

we have
O _ 0 &
p T 20
(5.20) N(%Y—) 2__ |2 2
L OZVl—pg 1l-p

Setting y = 0 yields p2 =T, and with arbitrary vy putting x =0

gives t2 =T, . Hence, @l = Fl and @2 = F2 .

Finally, in Case(y), Py <0, r, <0, %, =1, i=1,2. Ir,

in (5.1), we take x,y < 0 and use the fact that &(x,y) = 5(—x,—y)

for a normeal cdf, we obtain

2 2 :
(5.21) I8, (xy) = I F (xy), X,y > 0 .
i= i=1 *

Now, if we set y = cx and let x > ®» , we see from Corollary 4.2 that

the asymptotic relation (4.24) holds for 51 and ¥, for all c >0

28



and also holds for @2 and Fz at-least for all ¢ in an interval of

positive length containing the point T2/02 . Hence, we have
242
2 g, (x,ex) (1-p7) 21, (x,ex) (1-25)°
(5.22) II < I o — > 1
AL e B fim 22 - D)= 1)
o T;/\Ty O o Ty i Gi

ags X > . for all c¢ in an interval of positive length containing the

point T2/02 . But

(5.23) 2 ¢i(x,cx) 2 (l—riQ)l/2 N o) 2}
.23 I = I T eXpi=- = @ s
s=1 fi(x,cxs =1 (l_pi)é P[ 5 Qle) x

where Q(c) 1is a quadratric polynomial, and (5.22) implies that the rhs
of (5.23) has a finite positive 1limit for all ¢ in an interval of posi-

tive length. This can happen only if Q(c) = 0 ; the limit is then

2 2 2
Hi=l/fz;ri)/(l—pi) . Thus we have

2 2p.c 2 2 2r.c 2
2y— -

(.24) [l5-or+Slaed™ = T3 sl oLt

i=l{ o, i1 T, i=l}o, i1 T.

1 1. 1 1

and

2 - . - . .
(5.25) il (l—pg) 3/2_1-__ .c.:fi < . -F-)i = ]’2[ (]__I-z) 3/2=_l..._ ffl‘. < .1:2-.

. i o, T. J\T. o. . i O, T. J\T. g.j ?

i=1 i 1 i i i=1 i i i 1

both relations holding for all ¢ in an interval of positive length.

Consequently, from (5.2L4) we obtain

(5.26) 1__]_-____._J-_+l..i___l._ =0 ,
2 2 2 2 2 2
o, M- l-r o l—p2 l-r

1+7F 1
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> 2 P 2
Tl 1—pl 1-r T2 l-p2 lnrg
. 1 Py 1 1 P To
(5.28) 0. T 2T T 3) 5T 2" 3)=0.
11 l—pl l—rl 22 l--p2 l-r2

If ry = pl s then @l = Fl » and hence @2 = F2 « 50, it remains only
to investigate the possibility ry # P 5 in this case, (5.26)=> r, # o

and from (5.26) and (5.27) we have

IR

(5.29)

i}
~
"

say

-
FQIH
[

But from (5.25) we know that the polynomials in ¢ on the two sides of
the equation have the same zeros. The zeros of the lhs are {T/pl, Tpl, 0}
if P, = 0 and {Tpl, T/pl, 0,5 T/p2} if Py #0 Aand of the rhs

{T/rl, Ty, 0} if r, =0 and ‘{Trl, /Ty, Tr,, T/ry} if r, #0 .

Hence, the assumption that rl # pl < 0 1leads to the conclusion rl = p2

ard r_ = Py - This, together with (5,26), contradicts the assumption that

=

O; > 0, . Thus in Case (y) alsc, we must have Ty = Pys Tp = 0y, SO that

1 1° @2 = F2 . Q.E.D.
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